Localization and function of Ih channels in a small neural network.

نویسندگان

  • Marie L Goeritz
  • Qing Ouyang
  • Ronald M Harris-Warrick
چکیده

Subthreshold ionic currents, which activate below the firing threshold and shape the cell's firing properties, play important roles in shaping neural network activity. We examined the distribution and synaptic roles of the hyperpolarization-activated inward current (I(h)) in the pyloric network of the lobster stomatogastric ganglion (STG). I(h) channels are expressed throughout the STG in a patchy distribution and are highly expressed in the fine neuropil, an area that is rich in synaptic contacts. We performed double labeling for I(h) protein and for the presynaptic marker synaptotagmin. The large majority of labeling in the fine neuropil was adjacent but nonoverlapping, suggesting that I(h) is localized in close proximity to synapses but not in the presynaptic terminals. We compared the pattern of I(h) localization with Shal transient potassium channels, whose expression is coregulated with I(h) in many STG neurons. Unlike I(h), we found significant levels of Shal protein in the soma membrane and the primary neurite. Both proteins were found in the synaptic fine neuropil, but with little evidence of colocalization in individual neurites. We performed electrophysiological experiments to study a potential role for I(h) in regulating synaptic transmission. At a synapse between two identified pyloric neurons, the amplitude of inhibitory postsynaptic potentials (IPSPs) decreased with increasing postsynaptic activation of I(h). Pharmacological block of I(h) restored IPSP amplitudes to levels seen when I(h) was not activated. These experiments suggest that modulation of postsynaptic I(h) might play an important role in the control of synaptic strength in this rhythmogenic neural network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 44: The Role of HCN Channels in T Cell Function

Ion channels play a major role in the regulation of T cell function in health and disease. In a computer-based model, established to simulate T cells’ membrane potential (VM) generation, we discovered a discrepancy between the simulation and patch-clamp recordings. The predicted VM was more hyperpolarized than the measured VM, indicating that a yet unknown, depolarizing ion current might ...

متن کامل

O23: Modulation of Pacemaker Channels and Rhythmic Thalamic Activity by Demyelination and Inflammatory Cytokines

The thalamus is a central element for the generation of rhythmic oscillatory activity under physiological and pathophysiological conditions. Especially slow oscillations in the delta and theta frequency band which normally occur during slow-wave sleep are associated with a number of neuropsychiatric conditions if they occur during wakefulness and may be the basis for the generation of character...

متن کامل

Comparison of Three Soft Computing Methods in Estimating Apparent Shear Stress in Compound Channels

Apparent shear stress acting on a vertical interface between the main channel and floodplain in a compound channel serves to quantify the momentum transfer between sub sections of this cross section. In this study, three soft computing methods are used to simulate apparent shear stress in prismatic compound channels. The Genetic Algorithm Artificial neural network (GAA), Genetic Programming (GP...

متن کامل

Prediction of Entrance Length for Magnetohydrodynamics Channels Flow using Numerical simulation and Artificial Neural Network

This paper focuses on using the numerical finite volume method (FVM) and artificial neural network (ANN) in order to propose a correlation for computing the entrance length of laminar magnetohydrodynamics (MHD) channels flow. In the first step, for different values of the Reynolds (Re) and Hartmann (Ha) numbers (600<ReL increases.

متن کامل

کاهش رنگ تصاویر با شبکه‌های عصبی خودسامانده چندمرحله‌ای و ویژگی‌های افزونه

Reducing the number of colors in an image while preserving its quality, is of importance in many applications such as image analysis and compression. It also decreases memory and transmission bandwidth requirements. Moreover, classification of image colors is applicable in image segmentation and object detection and separation, as well as producing pseudo-color images. In this paper, the Kohene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 106 1  شماره 

صفحات  -

تاریخ انتشار 2011